Novel point mutations in the dihydrofolate reductase gene of Plasmodium vivax: evidence for sequential selection by drug pressure.
نویسندگان
چکیده
Mutations in the dihydrofolate reductase (dhfr) genes of Plasmodium falciparum and P. vivax are associated with resistance to the antifolate antimalarial drugs. P. vivax dhfr sequences were obtained from 55 P. vivax isolates (isolates Belem and Sal 1, which are established lines originating from Latin America, and isolates from patient samples from Thailand [n = 44], India [n = 5], Iran [n = 2], and Madagascar [n = 2]) by direct sequencing of both strands of the purified PCR product and were compared to the P. vivax dhfr sequence from a P. vivax parasite isolated in Pakistan (isolate ARI/Pakistan), considered to represent the wild-type sequence. In total, 144 P. vivax dhfr mutations were found at only 12 positions, of which 4 have not been described previously. An F-->L mutation at residue 57 had been observed previously, but a novel codon (TTA) resulted in a mutation in seven of the nine mutated variant sequences. A new mutation at residue 117 resulted in S-->T (S-->N has been described previously). These two variants are the same as those observed in the P. falciparum dhfr gene at residue 108, where they are associated with different levels of antifolate resistance. Two novel mutations, I-->L at residue 13 and T-->M at residue 61, appear to be unique to P. vivax. The clinical, epidemiological, and sequence data suggest a sequential pathway for the acquisition of the P. vivax dhfr mutations. Mutations at residues 117 and 58 arise first when drug pressure is applied. Highly mutated genes carry the S-->T rather than the S-->N mutation at residue 117. Mutations at residues 57 and 61 then occur, followed by a fifth mutation at residue 13.
منابع مشابه
Genetic mutations in 57 and 58 codons gene of Plasmodium vivax dihydrofolate reductase
Introduction: The use of Sulfadoxine and pyrimethamine (SP) for treatment of vivax malaria is not common in most of malarious areas because of sensivity of this parasite to chloroquine. But, Plasmodium vivax isolates are exposed to SP because of mixed infection with P.falciparum and this subject has lead to emergence of mutations in P.vdhfr gene. As Plasmodium vivax is the most prevalent specie...
متن کاملPyrimethamine and WR99210 exert opposing selection on dihydrofolate reductase from Plasmodium vivax.
Plasmodium vivax is a major public health problem in Asia and South and Central America where it is most prevalent. Until very recently, the parasite has been effectively treated with chloroquine, but resistance to this drug has now been reported in several areas. Affordable alternative treatments for vivax malaria are urgently needed. Pyrimethamine-sulfadoxine is an inhibitor of dihydrofolate ...
متن کاملMOLECULAR SURVEILLANCE OF Plasmodium vivax AND Plasmodium falciparum DHFR MUTATIONS IN ISOLATES FROM SOUTHERN IRAN
In Iran, both Plasmodium vivax and P. falciparum malaria have been detected, but P. vivax is the predominant species. Point mutations in dihydrofolate reductase (dhfr) gene in both Plasmodia are the major mechanisms of pyrimethamine resistance. From April 2007 to June 2009, a total of 134 blood samples in two endemic areas of southern Iran were collected from patients infected with P. vivax and...
متن کاملDefining the role of mutations in Plasmodium vivax dihydrofolate reductase-thymidylate synthase gene using an episomal Plasmodium falciparum transfection system.
Plasmodium vivax resistance to antifolates is prevalent throughout Australasia and is caused by point mutations within the parasite dihydrofolate reductase (DHFR)-thymidylate synthase. Several unique mutations have been reported in P. vivax DHFR, and their roles in resistance to classic and novel antifolates are not entirely clear due, in part, to the inability to culture P. vivax in vitro. In ...
متن کاملPlasmodium vivax dhfr Mutations among Isolates from Malarious Areas of Iran
The use of sulfadoxine and pyrimethamine (SP) for treatment of vivax malaria is uncommon in most malarious areas, but Plasmodium vivax isolates are exposed to SP because of mixed infections with other Plasmodium species. As P. vivax is the most prevalent species of human malaria parasites in Iran, monitoring of resistance of the parasite against the drug is necessary. In the present study, 50 b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 47 5 شماره
صفحات -
تاریخ انتشار 2003